Coulomb branches and cyclotomic rational Cherednik algebras

Hiraku Nakajima (RIMS, Kyoto)

2016-09-26 Skoltech (Moscow)

- ·1503.03676 Nakajima
- ·1601.03586 Braverman-Finkelberg-Nakajima
- .1604.03625
- · its appendix Braverman-Finkelberg-Kamnitzer-Kodera-Nakajima-Webster-Weekes
- ·1608.00875 Kodera-Nakajima

Coulomb branches of 3D N=4 SUSY gauge theories

```
Take G: a compact Lie group, G its complexification
M: a quaternionic representation of Gc

Physics (a symplectic representation of G)

⇒3D N=4 SUSY gauge theory (4D N=2 as well)
```

M_C = M_C(G,M) : Coulomb branch
 a noncompact hyperKaehler manifold
 possibly with singularities
 and SU(2)-action rotating complex structures

```
Very roughly
     gauge theory \cong 3D \sigma-model with target \mathcal{M}_{\mathcal{C}}
    (when M_H = 10 and M_C is smooth)
                 - Higgs branch = hyperKaehler quotient M/1/Gc
```

1996 Seiberg-Witten

```
Mc(Gc, M) = Atiyah-Hitchin manifold
 SU(2), 0 = moduli of centered SU(2) charge 2
                   magnetic monopoles on \mathbb{R}^3
```

Then many subsequent works computing \mathcal{M}_{C} in examples.....

But the definition of $\mathcal{M}_{\mathcal{C}}$ was not <u>clear</u> to mathematicians (e.g., me).

17 years later

2013 Cremonesi-Hanany-Zaffaroni

combinatorial expression (monopole fomula) of

ChC* (IM)

coordinate ring of Mc (chiral ring)

The formula is mathematically meaningful!

It motivated me to look for a mathematical definition.

A proposal of a mathematical definition

Idea: Suppose we have a TQFT given by twisting of a SUSY gauge theory.

Then $Z(S^2)$ = (Hilbert space for S^2) is

Moreover, in mathematical works, $Z(\Sigma_g)$ is defined by cohomology groups of moduli spaces $G_c = SU(z), M=0$ of a nonlinear PDE (e.g., flat connection, Seiberg-Witten)

Combining it with heuristic consideration and monopole formula, we arrive at the following:

Assume M=N⊕N*

= the space of Hecke correspondences with sections

= moduli stack of (P1, P2, 9,5)

 P_i : holomorphic G-b'dle on D (formal disk) P_i

4: PID304 => PID1304 isomorphism

s: holomorphic section of $\mathcal{R} \times_{\mathcal{G}} \mathcal{N}$

s.t. $\varphi(s)$ has no pole at 0

Lemma

commutative

- *This gives a definition of $\mathcal{M}_{\mathcal{C}}$ as an affine algebraic variety
- * C*-action is given by homological degrees with correction
- * che (The] = monopole formula (when the degree ≥0)

Example
$$G = \mathbb{C}^*$$
, $N = 0$
 $P_{\pi} \cong \text{trivial line bundle} \qquad Q = \mathbb{Z} \qquad (R \in \mathbb{Z})$

$$R = -\frac{7}{4} - \frac{1}{4} \qquad R = -\frac{7}{4} + \frac{1}{4} \qquad R = -\frac{7}{4} + \frac{1}{4} = -\frac{7}{4} + \frac{1}{4} = -\frac{1}{4} =$$

$$: H_*^{BM}(\&) = \bigoplus_{k \in \mathbb{Z}} H_*(BC^*) \cong \mathbb{C}[w, \chi, \chi^{-1}]$$

$$\mathcal{M}_{\mathbb{C}} = \mathbb{C} \times \mathbb{C}^{*} \quad (= \mathbb{T}^{*} \mathbb{C}^{*})$$

Remark 1) When G = torus, N = arbitrary, when G = torus, has an explicit presentation.

2)
$$\mathcal{T}_0(\mathcal{C}) \cong \mathcal{T}_0(\mathcal{C})$$
 (in general) Pontryagin dual $\mathcal{T}_0(\mathcal{C})$ -action.

Quantization

Consider \mathbb{C}^* -action on the formal disk \mathbb{D} . The equivariant homology $\mathbb{H}^{\mathbb{C}^*}_{\mathbb{R}}(\mathcal{E})$

- is a deformation of $H_*(R)$ over $S_{rec}H_*(r)=C$
- has a convolution product, but noncommutative!

Def. $A_k = H_*^{\mathbb{C}^*}(\&)$: quantized Coulomb branch

Example $G = \mathbb{C}^*$, N = 0

$$A_k = \langle w, x, x' \rangle$$
 $(x^{\pm}, w) = kx^{\pm}$

So $\chi^{\pm} = \mathcal{D}_{w}^{\pm}: f(w) \mapsto f(w \pm k)$ difference operators

difference operators with poles along root hyperplanes Q. How to compute the image?

When
$$G = G(\mathbb{R})$$
 (more generally $G = TG(\mathbb{R}_i)$)
$$\mathcal{R} \supset \{(E_1, E_2, \varphi, s) \mid E_1 \subset E_2 \subset E_1(0)\} \}$$
smooth closed subvariety

The image of its fundamental class under \Rightarrow can be computed by the fixed point fomrula! cf. Bullimore, Dimofte, Gaiotto 1503.04817

Example
$$G = GL(R)$$
, $N = g(R) \oplus (\mathbb{C}^k) \oplus \mathbb{C}^k$
 $1 \le n \le R$
 $F_n = \sum_{\substack{I \subset \{1, \dots, R\} \\ \#I = n}} \frac{w_i - w_j + t}{j \notin I} \prod_{i \in I} \frac{1}{w_i - w_j} \underbrace{w_i - x_a}_{i \in I} \underbrace{x_i - x_a}_{w_i} \underbrace{x_i - x$

Moreover, these operators generate A.

 \Rightarrow

Th. spherical part of

Ak 😅 cyclotomic rational Cherednik algebra

in this example

Sk × (Z/lZ)k

Remark 1) $M_C \cong Sym^k(C/Z_{(Z)})$ de Boer, Hori, Ooguri, Oz 1997

2) finite ADE quiver $\Rightarrow \not \Rightarrow$ truncated shifted Yangian